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Using a large sample of cases and controls from a single center, we show that a TrC substitution in exon 9 (Y402H)
of the complement factor H gene is strongly associated with susceptibility to age-related macular degeneration, the
most common cause of blindness in the elderly. Frequency of the C allele was 0.61 in cases, versus 0.34 in age-
matched controls ( ). Genotype frequencies also differ markedly between cases and controls (524 2P ! 1 # 10 x p

[2 degrees of freedom]; ). A multiplicative model fits the data well, and we estimate the524112.68 P ! 1 # 10
population frequency of the high-risk C allele to be 0.39 (95% confidence interval 0.36–0.42) and the genotype
relative risk to be 2.44 (95% confidence interval 2.08–2.83) for TC heterozygotes and 5.93 (95% confidence
interval 4.33–8.02) for CC homozygotes.

Age-related macular degeneration (AMD) (ARMD1
[MIM 603075]), the leading cause of untreatable blind-
ness among the elderly in Western populations, is a
clinically heterogeneous and genetically complex disease
with multiple genetic and environmental risk fac-
tors (Age-Related Eye Disease Study Research Group
2000). Mutations in several genes (e.g., ABCA4 [MIM
601691], TIMP3 [MIM 188826], RDS/peripherin [MIM
179605], and ELOVL4 [MIM 605512]) can cause early-
onset macular diseases, but they do not appear to con-
tribute significantly to AMD susceptibility (Stone et al.
2001). Particularly interesting are the fibulin-3 gene
(MIM 601548) and related genes. Fibulin-3 mutations
underlie drusen formation in Doyne honeycomb retinal
dystrophy (MIM 126600), a disease that is phenotypi-
cally similar to AMD (Stone et al. 1999; Marmorstein
et al. 2002). A mutation screen of five other fibulin genes
detected missense mutations in fibulin-5 (MIM 604580)
in 1.7% of patients with AMD (Stone et al. 2004). In
addition, a fibulin-6 (MIM 608548) variant has been
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reported to cosegregate with the ARMD1 locus in one
large pedigree (Schultz et al. 2003). However, this change
does not appear to play a significant role in AMD (Abe-
casis et al. 2004; Hayashi et al. 2004; Iyengar et al.
2004).

Linkage studies have suggested several chromosomal
regions that may harbor AMD susceptibility genes. Klein
and colleagues (1998) were the first to map a suscepti-
bility locus (ARMD1) to chromosome 1q25-q31 in a
large pedigree with AMD. Since then, many studies have
been performed, and, overall, their results provide sup-
port for susceptibility loci on several chromosomes, in-
cluding chromosomes 1q, 9q, 10q, and 22q (Weeks et
al. 2000, 2004; Majewski et al. 2003; Seddon et al.
2003; Abecasis et al. 2004; Iyengar et al. 2004; Schmidt
et al. 2004). Association studies have also been per-
formed, and some of the identified loci appear to con-
tribute to disease susceptibility. For example, an asso-
ciation between AMD and allelic variants of apolipo-
protein E (APOE [MIM 107741]) has been widely doc-
umented, with the APOE-�4 allele linked to lower risk
of disease and the APOE-�2 allele linked to higher risk
(Klaver et al. 1998; Schmidt et al. 2002; Baird et al.
2004; Zareparsi et al. 2004). Recently, we reported an
association between increased risk of AMD and the
D299G variation in toll-like receptor 4 (TLR4 [MIM
603030]), a protein involved in innate immunity and
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Table 1

Genotypic and Allele Frequencies for the TrC (Y402H) Variation
in CFH Exon 9

GENOTYPE

OR ALLELE

NO. (FREQUENCY) OF GENOTYPE

OR ALLELE IN

Individuals with AMD
[ ]N p 616

Controls
[ )]N p 275

TT 86 (.14) 114 (.415)
TC 311 (.50) 136 (.495)
CC 219 (.36) 25 (.09)
T allele 483 (.39) 364 (.66)
C allele 749 (.61) 186 (.34)

phagocytosis by retinal pigment epithelium (Zareparsi
et al. 2005). Despite these advances, the alleles that ac-
count for most of the genetic susceptibility to AMD re-
main undiscovered.

Recently, three independent studies have suggested
that a polymorphism (Y402H) in the complement factor
H gene (CFH [MIM 134370]) makes a substantial con-
tribution to AMD susceptibility (Y402H has a TrC sub-
stitution at nucleotide 1277 in exon 9, which results in
a tyrosinerhistidine change). All three studies relied on
linkage disequilibrium in the region and advances in SNP
genotyping for gene identification (Abecasis et al. 2005).
CFH maps to a region of chromosome 1q where several
genome scans showed substantial evidence for linkage.
One study (Klein et al. 2005), a genomewide association
scan of 96 AMD cases and 50 controls by use of an
Affymetrix 100K chip, identified two neighboring SNPs
that were significantly associated with AMD. Another
study (Edwards et al. 2005) examined noncoding SNPs
across 14 Mb of the ARMD1 locus on chromosome 1q
in a sample of 224 cases and 134 controls; genotyping
of 14 SNPs spanning CFH was performed in a larger
sample. The third study (Haines et al. 2005) also focused
on examination of SNPs distributed across the ARMD1
locus, but it included a sample of 495 unrelated cases,
185 controls, and 182 families. In each study, initial
associations were followed by additional genotyping
that eventually led to the identification of a peak of
association, which suggested the CFH-Y402H (C/T) var-
iant as the susceptibility allele. These studies reported
odds ratios (ORs) for AMD ranging between 2.4 and
4.6 for carriers of the C allele and between 3.3 and 7.4
for CC homozygotes (Edwards et al. 2005; Haines et al.
2005; Klein et al. 2005).

Independent replication studies are required to accu-
rately assess the contribution of the associated alleles to
disease susceptibility, because initial reports of associa-
tion are vulnerable to a “winner’s curse” effect, which
can produce overestimates of the effect size (Goring et
al. 2001; Lohmueller et al. 2003). We used a large sam-
ple of cases ( ) and controls ( ), col-N p 616 N p 275
lected at the Kellogg Eye Center in Ann Arbor, MI, to
provide independent estimates of the effect of this com-
mon variant (CFH-Y402H) on AMD susceptibility. A
majority of patients with AMD had late-stage AMD that
presented as choroidal neovascularization (CNV [N p

]), geographic atrophy (GA [ ]), or both238 N p 143
CNV and GA ( ). The remaining patients hadN p 133
large macular drusen (LMD) in both eyes ( )N p 102
(Abecasis et al. 2004; Zareparsi et al. 2004). Control
individuals were at least 68 years old and did not present
any evidence of AMD in either eye after ophthalmic
examination. All patients and controls reported their
ethnicity as “white, not of Hispanic origin” and were
recruited after informed consent. The human-genetics

investigations described here were approved by the Uni-
versity of Michigan institutional review board. Geno-
typing was performed without knowledge of disease
status. As shown in table 1, we detected a significantly
higher frequency of the C allele in patients with AMD
than in controls (0.61 vs. 0.34; x2 p 110.96 [1 df];

). Genotype frequencies are also signifi-�24P ! 1 # 10
cantly different in affected and unaffected individuals
( [2 df]; ). OR calculations2 �24x p 112.68 P ! 1 # 10
show that individuals carrying at least one copy of the
C allele have a 4.36-fold increase in the risk of AMD
(95% CI 3.13–6.08), whereas homozygous CC individ-
uals exhibit a 5.52-fold increase in the risk of developing
AMD (95% CI 3.54–8.59). Our results are within the
range reported by the original studies (Edwards et al.
2005; Haines et al. 2005; Klein et al. 2005), and they
validate the gene-dosage effect reported in two of the
studies (Haines et al. 2005; Klein et al. 2005). Inclusion
of age and sex as covariates in the logistic regression
analysis did not affect the conclusions. Homozygous in-
dividuals for the putative risk allele were more common
in all subtypes of AMD than in controls; specifically,
those homozygous for the C allele included 38% of pa-
tients with GA, 34% of those with CNV, and 33% of
those with LMD in both eyes, as compared with only
9% of control individuals. Interestingly, the homozygous
genotype (CC) was more common in patients with a
family history of AMD (38% of 261 cases) than in those
without a family history (33% of 308 cases), a difference
that was not statistically significant ( ). Finally, weP 1 .05
note that the diagnosis of AMD occurred earlier for
patients with at least one copy of the risk allele (mean
in years [� SD] 70.9 � 8.6) than for those without the
risk allele (73.7 � 9.2; ).P p .01

To characterize the contribution of the Y402H poly-
morphism to AMD susceptibility, we fitted a series of
genetic models to the data by maximum-likelihood es-
timation (results summarized in table 2). Model fitting
was performed using the software and methods of Li et
al. (2005). We performed our analysis with the assump-
tion of a disease prevalence (K) of 0.20 (table 2), which
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Table 2

Comparison of Fitted Genetic Models

Prevalence and Model
(No. of Parameters) ln(L) P(C)a f(TT)b f(TC)b f(CC)b GRR1c GRR2d K

Attributable
Fraction ls

Constrained to :K p .20
No effect (1) �923.18 .52 .20 .20 .20 1 1 .20 … …
General (3) �864.86 .39 .08 .21 .47 2.81 6.30 .20 .62 1.21
Multiplicativee (2) �865.75f .39 .08 .20 .49 2.44 5.93 .20 .59 1.21
Additiveg (2) �869.14 .41 .07 .23 .38 3.05 5.10 .20 .63 1.14
Dominanth (2) �893.28 .46 .09 .24 .24 2.62 2.62 .20 .53 1.05
Recessivei (2) �897.67 .46 .16 .16 .36 1.00 2.24 .20 .21 1.07

Unconstrained:
No effect (1) �923.18 .52 NA NA NA 1 1 NA … …
General (4) �864.46 .49 .30 .57 .83 1.88 2.77 .56 .46 1.06
Multiplicativee (3) �865.54 .43 .15 .31 .66 2.10 4.40 .32 .53 1.14
Additiveg (3) �864.46 .49 .30 .57 .83 1.88 2.76 .56 .46 1.06
Dominanth (3) �884.30 .52 .41 .75 .75 1.83 1.83 .68 .39 1.02
Recessivei (3) �884.77 .53 .63 .63 .91 1.00 1.43 .71 .11 1.01

NOTE.—NA p not applicable.
a Estimated frequency of allele C.
b Estimated probability of disease for genotype.
c .GRR1 p f(TC)/f(TT)
d .GRR2 p f(CC)/f(TT)
e Constraint: .2GRR2 p GRR1
f The best-fitting model, selected using the AIC.
g Constraint: .GRR1 � 1 p GRR2 � GRR1
h Constraint: .GRR1 p GRR2
i Contraint: .GRR1 p 1.0

is compatible with published estimates for elderly pop-
ulations 170 years of age (Friedman et al. 2004), and
without constraints on disease prevalence (table 2). With
the use of a model with constrained prevalence (K p

), the data suggest that the population frequency of0.20
the C allele is 0.39 (95% CI 0.36–0.42) and that the
relative risk is 2.81 (95% CI 2.17–3.65) for TC hetero-
zygotes and 6.30 (95% CI 4.53–8.72) for CC homo-
zygotes. We also used the Akaike Information Criterium
(AIC) to compare all models, including those with con-
strained and unconstrained prevalence, and to select the
best-fitting genetic model. Our results suggest a multi-
plicative model—with , a disease-allele fre-K p 0.20
quency of 0.39 (95% CI 0.36–0.42), and genotype rel-
ative risks of 2.44 (95% CI 2.08–2.83) for TC
heterozygotes and 5.93 (95% CI 4.33–8.02) for CC ho-
mozygotes—as the most parsimonious model. The fitted
log likelihood was for the multipli-ln (L) p �865.75
cative model with (two parameters, one forK p 0.20
the genotype relative risk and another for the disease-
allele frequency), versus for an un-ln (L) p �864.86
constrained model (four parameters, corresponding to
three penetrances and one disease-allele frequency) and

for a model under the assumption ofln (L) p �923.18
no contribution to disease susceptibility (one parameter,
corresponding to the marker-allele frequency). Using this
multiplicative model, we estimate the contribution of
this allele to sibling-specific recurrence risk of AMD to

be and the population-attributable fraction tol p 1.21s

be 0.62. This is the locus-specific , which can be cal-l s

culated as a function of penetrances and disease-allele
frequencies by use of the formulas of Risch (1990). The
model predicts frequencies of 0.43, 0.47, and 0.10
among controls and 0.15, 0.48, 0.37 among cases for
the TT, TC, and CC genotypes, respectively; the pre-
dicted values closely match the observed frequencies (see
table 1) (goodness-of-fit [2 df], not signifi-2x p 2.61
cant). An additive model also fits the data well, but dom-
inant or recessive models are excluded. The agreement
between our fitted model and observed genotype counts
suggests that population stratification is not a major con-
cern (Wittke-Thompson et al. 2005), a conclusion con-
sistent with our analysis of previous genome-scan data.

CFH plays an essential role in regulation of comple-
ment activation, a major component of innate immunity
against microbial infection. This regulation is achieved
because CFH can bind to C3b (generated by cleavage
of the a-chain of complement 3 [C3]), leading to the
production of terminal C5b-9 complex (Giannakis et al.
2003). Many proteins of the complement system, in-
cluding C5b-9 complex, have been detected in drusen
from the eyes of patients with AMD (Mullins et al. 2000;
Hageman et al. 2001; Johnson et al. 2001). CFH has
three binding sites for C3b and additional binding sites
for heparin and C-reactive protein (CRP). The Y402H
change is expected to alter these interactions, since it is
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located within the cluster of positively charged amino
acids implicated in the binding of CRP and heparin
(Giannakis et al. 2003). Notably, associations have been
reported between AMD and increased levels of CRP
(Seddon et al. 2004) and between AMD and a poly-
morphism in TLR4, a key gene involved in innate im-
munity (Zareparsi et al. 2005). Hence, it is possible that
certain microbial infections may be environmental trig-
gers for AMD pathogenesis.

In summary, our data provide strong evidence for the
Y402H variant being a common susceptibility allele for
AMD. It is possible that another allele in strong dis-
equilibrium with Y402H may cause disease susceptibil-
ity; this hypothesis can be tested only by evaluation of
all polymorphisms and/or mechanistic functional evi-
dence to explain the role of the Y402H variant. Our
resequencing of CFH exon 9 (∼500 bp) in all cases and
controls did not identify any additional nearby coding
variants. It will also be important to determine if the
CFH-Y402H variant can explain the chromosome 1q
linkage signal that is observed in independent genome
scans (Klein et al. 1998; Majewski et al. 2003; Seddon
et al. 2003; Abecasis et al. 2004; Iyengar et al. 2004;
Weeks et al. 2004). Although CFH and TLR4 are the
first major AMD susceptibility genes to be identified,
comprehensive studies of genetic variations are expected
to lead to the identification of additional variants that
contribute to this complex and debilitating disease.
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